CHAPTER 13

Statistical Models for Multiple-Scaled
Analysis

Donald E. Myers

INTRODUCTION

Geographic information systems might be viewed as spatial database managers.
Both for what a GIS can do and also for the analysis of such data it is important to
consider the connotation “spatial.” In a spatial data set each data entry is associated
with a location and there is a relationship between the data value and its location.
This “location” may be a point in space or it may be a geometrical object, for
example, a rectangle as in a pixel for remotely sensed data. The size and shape of
this location is also important, especially as it relates to the scale of the data set.
The relationship between a data value and its “location” especially must be consid-
ered when data are to be analyzed at multiple scales or when the scale is to be
changed. This relationship is also important when considering spatial variability.
Since this relationship is seldom explicitly describable, statistical methods are used
to treat the data “ensemble” rather than as individual data entries.

There are at least three areas in which statistical modeling is important for
multiple-scaled analyses in GIS, particularly remotely sensed data. First, there is the
quality of the data. In general all GIS packages treat the data values as being without
error and do not provide for the incorporation of any measure of the reliability of
the data. Secondly, there is what might be called the completeness of a data layer.
Goodchild et al. (1992) have described six different data models. One corresponds
to a form of compositing (raster of cells), two of the others correspond to sparse
data sets and differ only in that the grid is regular for one and not for the other
(digital elevation model and weather map). A fourth (contour map) might be viewed
as having been derived from one of the other three, but the resulting data set does
not uniquely determine one of the other models as the source. Multiple-scaled
analyses will require a common data model. Thirdly, the spatial variability of a data
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set is a crucial characteristic and is a function of scale; it is important to be able to
relate the variability at one scale to that at another. Because the characterization and
quantification of variability is important for understanding and characterizing the
first two, it is more convenient to consider it first. Spatial variability often changes
with respect to time and the characterization of this change is an important aspect
of spatial-temporal modeling; see for example Biondi et al. (1994). Even with the
soil or vegetation cover, data model variability plays a role. While each polygon
may be labeled with a single soil or vegetation type, this labeling may be based on
information collected on a much smaller sized polygon. For example, in EPA’s
EMAP program, data will be collected in a multiple tiered scheme and each tier
will have its own degree of variability.

Spatial variation is also important for classification analysis of remotely sensed
data since pixels are grouped into classes because of similarities, and classes are
distinguished because of dissimilarities (Fabbri et al., 1993). That is, it is necessary
to identify and quantify within-band correlations but it is also necessary to quantify
and characterize between-band correlation. This may involve only correlations
between bands for the same pixel or a combination of spatial and interband corre-
lations. When data layers are of different scales, it is important to quantify the change
in spatial and interband correlations when scales are changed in order to use the
multiple layers for classification analysis.

For some measurements it is difficult to quantify the scale of the measurement;
for example, hydraulic conductivity is commonly associated with a “representative
volume” but the value is not an average over the volume. In many instances mea-
surements can only be considered as point values in a limiting sense: hence, although
they are quantitative they are not comparable to remotely sensed data with a fixed
pixel size nor to averaged values.

Heterogenity, Homogeneity, and Scale

Since at least four of the data models relate at least indirectly to point values, it
is useful to construct a model for point values that reflects different scales. Let

Z(x) = Y(x)+ m(x) +e(x) 1)

This can be interpreted as a decomposition of the heterogenities and homogeneities.
Y(x) represents the local variation, m(x) the regional variation, and e(x) the extreme
local variation or simply noise. The importance of each of these as well as the extent
to which they contribute to the representation is related to scale. When measurements
are made on a sufficiently large scale, local variation may be indistinguishable from
noise. An image that is too homogeneous contains little or no useful information
and features will not be recognizable. An image that is too heterogeneous may
contain useful information but will be difficult to discern. Important features will
be distinguished by local regions of homogeneity separated by heterogeneities. The
distinction between the two will be maximally discernable at the right scale. This
requires quantifying the degrees of homogeneity and heterogeneity.
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Time and Space

Time might be considered simply as an additional dimension, but there are
several difficulties with this. One is that time is ordered; that is, there is a clear
notion of a past, a present and a future. Time is irreversible whereas the Euclidean
dimensions are ordered only by convention. The two or three Euclidean dimensions
are distinguishable from each other by convention but not uniquely by order; the
same metric is applicable to all three and a natural notion of distance in 2- or 3-D
space is available but no such metric is natural for space-time.

One solution is to consider a discrete set of times and to view the same variable
at different times as different variables. This approach is discussed in Rouhani and
Myers (1990). It corresponds to the treatment of multiple data layers, one for each
time point. Interband correlation would then correspond to temporal correlation. As
will be noted in the later discussion on intervariable spatial correlation, there are
difficulties in modeling space-time correlation. These are similar but not identical
to the difficulties encountered in modeling multiple spatial correlations.

SPATIAL VARIABILITY

An Empirical Form

Consider a region V decomposed into a union of disjoint, congruent subregions
Vis...,Vp,. These might be thought of as pixels in a remotely sensed data set where
V represents the entire image or some significant portion thereof. Suppose that
Yis---»¥m are the centers of the respective subregions. Let Z(x) represent a variable
of interest defined at each point x in V. Let v be a congruent subregion centered at
zero; then each v; can be written as

{yi+xIxev}

That is, each subregion is a translate of the subregion centered at zero, the translation
being determined by its center. Further let

Z(V)= (1/V)J'v Z(x) dx @)
be the average value of Z over V, i.e., the regional average value. Similarly let
Z(v,)= (1/v)_[ Z(x+y,)dx ®3)

where v is the congruent subregion centered at the origin. Z(v)) is then the average
of point values within v;. A word about notation is necessary; v and V have been
used in two different senses; in Eq. 2 and 3, they have been used to denote a region
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of integration and also to denote the “size” (length, area, volume) of the same regions.
The context should make it clear which sense is intended. Similarly although only
a single integral sign appears in each of these expressions, depending on the dimen-
sion of the space, each of the above integrals will in fact be a single, double, or
triple integral. This usage will appear elsewhere in the chapter.

Spatial variability can now be compared at three different scales. The variation
of point values with respect to the regional average value is given by

s*(0,V)= (1/v)jv [Z(x)-Z(V)]" dx @)

The variation of subregional average values with respect to the regional average
value is given by

$2(v,V) = (1/m)2[, lMm][z(vi)—z(V)]z )

i=]

Finally there is the average variation of point values within subregions

S*(0,v)= (1/m)2[i 1__Jn](1/\,)J'V [Z(vi) -Z(x+y, )]2 dx (6)

It remains to consider the relationship between these three. Note that Eq. 4 can also
be written as

s(0,V) = (1/m)2[ lMm](l/ v)jv [Z(x +y)- Z(V)]2 dx 7

2
N (1/m)2[‘_1 ](l/v)j [Z(x+y,)-Z(v.)+Z(v)-2Z(V)] &x  ®)
By squaring the integrand as the sum of two differences it is easy to see that
$?(0,V) =S%*(0,v)+S*(v,V) 1))

For a given function Z(x) one would expect the variation of point values within an
area or volume to increase with the size of the area or volume. For fixed V, however,
the value of S?(O,V) is fixed and it will be seen that in general as the size of the
subregions increase, S*(O,v) increases whereas S*(v,V) decreases. Considering the
subregions to be the pixels in a remotely sensed image then S(v,V) is the variation
in the image whereas S%O,v) is the unobserved (average) variation within pixels. If
the data is noisy then one way to smooth out the noise is to increase the pixel size,
but discrimination of the image may be lost as a consequence. This decomposition
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is analogous to the partitioning of the variance used in ANOVA. While in general
it is not possible to directly compute either S%(O,V) or S(O,v), it is useful to have
the identity given in Eq. 9. Note that

Z(vi)

hence relationships between first order moments are of less interest.

2(V)=(ym)y’,

i=l,...m]

Frequency Distributions

More information would be obtained if one could compare the frequency distri-
butions of point values within pixels against the frequency distribution of pixel values
within the image as well as against the frequency distribution of point values in the
entire image. If the latter distribution were Normal then the other two distributions
would also be Normal, or nearly so, with common means but with variances related
as in Eq. 9. It is also important to recognize that while the distributions of point
values within a pixel or point values within V are both continuous, the distribution
of pixel values is discrete since the number of pixels is finite. Unfortunately, in
general one cannot describe the interrelationship between these distributions.
Because of a Central Limit Theorem effect, the distribution of the Z(v;) values will
tend to be approximately Normal as the size of v;’s increase even without the
assumption of Normality for point values in V. In many applications an assumption
of Normality may not be unreasonable and has the advantage that the joint Normal
distribution is completely characterized by the first and second moments.

The above discussion of spatial variability does not make use of any assumptions
about spatial dependence or correlation, but an image that contains useful informa-
tion is not just a set of random values. Whether pixels, data on a regular grid or data
at irregularly spaced locations, there is some degree or form of interrelationships
between the values at different locations and the relationships between the values
are in turn affected by the proximity or distances between data locations. To ade-
quately address these issues it is necessary to proceed beyond empirical descriptions
or measures and consider models, i.e., theoretical quantification.

Theoretical Models

Rather than considering only one image, one might consider the image to be
one of multiple possibilities that could be generated. This is analogous to considering
Z(x) to be a random function. The covariance function, Cov{Z(x),Z(y)}, is acommon
measure of spatial variation and spatial dependence which exists if Z(x) has finite
variance for each x. In general this covariance will be a function of both x,y. If Z(x)
is second order stationary then

C(h) = Cov{Z(x +h), Z(x)} (10)
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exists and is only a function of the separation vector h. Under somewhat weaker
assumptions

¥(h) = 0.5 Var[Z(x + h) - Z(x)] (11)

exists and is only a function of the separation vector h. If Z(x) has constant mean then

y(h)=0.5 E{[Z(x +h)— Z(x)]z} (11a)
¥(h) is called the variogram and if Z(x) is second order stationary then
¥(h) =C(0)-C(h) (12)

Var denotes variance, Cov denotes covariance and E denotes expected value. While
stationarity, in its various forms, is a statistical property of the random function it
is also possible to rationalize such a property on non-statistical grounds. Each data
point has coordinates and these coordinates relate to an “origin,” yet clearly there
is no uniquely determined origin for all spatial measurements. It is then desirable
that the quantification of spatial variability and spatial correlation be given in a
manner that is not dependent on the choice of the origin for the coordinate system.
This is exactly what is required when the covariance function and the variogram are
to be functions of h only and not functions of the actual positions. The vector h
represents the relative relationship of two locations but not their absolute locations.

Covariance functions must satisfy a condition known as positive definiteness
whereas the variogram need only be conditionally negative definite. Covariances
must be bounded whereas variograms need not be. When the variogram (or the
covariance function) is a function of only the length of h instead of both the length
and the direction then Z(x) (and its variogram or covariance) is said to be isotropic.
The power model is an example of an isotropic variogram that does not correspond
to a covariance. The power model is given by

y(r)=r* O<a<2 13)

In the case of a fractal image, the exponent a is related to the fractal dimension; see
Burrough (1983a, 1983b), Jaggi et al. (1993). The variogram (or the covariance
function) can be used to quantify the spatial correlation between point values. In
addition, the effect of the change of scale on the variogram is easily computed. As
is implied by Eq. 11, variograms that correspond to covariances must be bounded
and the asymptotic value is the variance; hence they are characterized by a range
of correlation and the variance. In practice the variogram is modeled as a positive
linear combination of one or more standard models; in particular this allows for
modeling spatial correlation at multiple scales.
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If we consider the theoretical analogue of Eq. 9 by applying the expectation
operator and the definition of the variogram we obtain

(0, V) =7(0,v)+¥(v, V) (14)
where
¥(0,V) = (l/VZ)J.V J; ¥(u—w) du dw (15a)
¥(0,v) = (1/v2)-Uv ¥(u-w) du dw (15b)
Y(v,V)= (1/vV)MV Y(u-w) du dw (15¢)

Each of these three terms represents an average value of the variogram for pairs of
points; in Eq. 15a the pairs of points are in V, in Eq. 15b both points are in v, in
Eq. 15¢ one point is in v and one in V. As a theoretical relationship it can be useful
in determining an optimal pixel size. This problem of optimal support size occurs
in many areas of application. In mining one must balance the size of an ore block
with the problem of adequate discrimination of blocks of ore from blocks of waste;
see for example, Parker (1979). In environmental applications it is related to the
question of optimal-sized regions to remediate. This kind of relationship has occurred
in many areas of application. For example, Smith developed an empirical version
of Eq. 10 in the context of applications in agronomy. For extensions of this result
see Modjeska and Rawlings (1983), Zhang et al. (1990, 1994).

Non-Point Data

Remotely sensed data generated by sensors on satellites do not associate values
with points. Rather there is a value representing an average for each pixel. When
the spatial variation and spatial dependence of such data are considered then adjust-
ments must be made in the use of the variogram or covariance function.

Consider the decomposition of the region V into congruent subregions as used
above in the discussion of the empirical model. Then the analog of the point value
variogram would be

1.(0) =05 Var(Z(v, . )~ Z(v,)] T

where v,,;, v, are the translations of the subvolume v by the vectors x + h, x,
respectively. Using Eq. 3 above
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[Z(;/x+h) - Z(vx)]2 = [(l/v)‘[v [Z(u+x+h)-Z(u+x)] du]
= (l/vz)jj [Z(u+x+h) = Z(u+x)][Z(W+x+h) - Z(w +x)] dudw (17)

'Y,,(h)=(1/V2)IvJ: ¥(w—u+h)du dw—(l/vz)‘[ljv ¥(u—-w) du dw

Note especially the second term on the right (with a negative sign). This is the
average value of the variogram for all possible pairs of points within the subvolume
v. There is also an averaging effect in the first term. A similar result is obtained for
the covariance function. The second term on the right in Eq. 17 is the same as that
in Eq. 15b.

Modeling the Variability

Except for some instances in hydrology, one generally does not have state
equations from which the covariance function or variogram may be derived. Hence,
the spatial correlation must be estimated and modeled from data. Since direct
estimation of the covariance function requires separate estimation of the (constant)
mean, estimation and modeling of the variogram has advantages. The simplest and
most obvious estimator for the variogram is given by

¥ *(r,8) =[(1/2)/N(h)] 2 {Z(x+h)-Z(x)}* (18)

where the sum is taken over all pairs of data locations (x + h, x) such that (i) r —
d/2 < lhl < r + d/2 and (ii) © — €/2 < arg(h) < 6 + €/2 where |hl is the length of the
separation vector h and arg(h) is the angle of the vector, N(h) is the number of pairs
satisfying these conditions. The use of distance classes and angle windows is nec-
essary because of the use of irregularly spaced data locations, but is useful for
regularly spaced locations as well. In practice 0 is fixed and Eq. 18 is computed for
various choices of r (commonly called lags). Common choices for 8 are 0, 45, 90,
135 with € = 45. It is necessary to consider different directions in order to determine
whether the spatial correlation is isotropic or anisotropic. If only the range is
dependent on the direction the anisotropy is called geometric and is easily incorpo-
rated. But more general forms of anisotropy are not so easily modeled. Note that
Eq. 18 only produces estimated values of the unknown variogram whereas a func-
tional form is needed. It is not sufficient to fit a curve to the plot since not every
function will satisfy the required positive definiteness. Modeling the spatial corre-
lation function then requires first fitting a functional type and then the values of the
parameters. The second step lends itself to the use of weighted least squares. Because
of the dependence, the sample variance is not an estimate of the value of C(0), i.e.,
the maximal value of the variogram in the case of second order stationarity. The
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general problem of variogram estimation and modeling is discussed in Myers
(1991a,b).

The question of the number of data locations adequate for variogram estimation
has been considered by Warrick and Myers (1987), Webster and Oliver (1993), as
well as others. Note that it is not sufficient to merely consider the number, since the
pattern of data locations is equally important. When non-point data are used, for
example pixel values, the estimation and modeling of the variogram is complicated
because the sample variogram given in Eq. 18 will be distorted; the estimate of the
variance of the random function will be too small (because of the second term in
Eq. 17), and the apparent range of dependence will be increased. There is also the
potential for not distinguishing any spatial dependence. Non-stationarity of the
random function will also complicate estimation and modeling of the variogram.
Unfortunately when data from only one realization is available stationarity is not
testable. For a discussion of this problem, see Myers (1989a).

INTERPOLATION OF SPATIAL DATA

If Z(x) is known at all points in a volume v or V then computing the average is
straightforward. But if Z(x) is only known at discrete points, as on a regular grid or
irregularly spaced, then some form of estimation is required. The problem is even
more complicated if some of the data locations are outside the volume of interest.
To utilize a common data model it is necessary to have data on a regular grid; hence
if data are only available on an irregular grid then some form of interpolation is
required. Similarly, most contouring algorithms require data on a regular grid. While
some software packages will accept irregularly spaced data there are two distinct
steps in the analysis. The first step is interpolation to a regular grid and then
contouring from the regular grid. In order to minimize the effect of the contouring
algorithm it is desirable to have data available on a regular grid with very small
mesh; hence it may even be necessary to interpolate data from a regular grid. Both
the interpolation and the contouring steps involve some uncertainty and a contour
map produced from irregularly spaced data is not uniformly reliable although most
contouring packages do not indicate this. Hence some contour maps may be very
misleading or misrepresentative. .

There are two general approaches to interpolation: for each grid point an esti-
mator is constructed which is a function of the data; or alternatively an interpolating
function is constructed which then can be evaluated at the desired locations. The
former approach implicitly determines an interpolating function but may not provide
an explicit representation. For a large class of interpolation algorithms these two
approaches are equivalent and can be transformed one into the other.

Deterministic Methods

Consider the model given in Eq. 1 but with e(x) = 0 and
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m(x) = ZMW‘_D] ¢f(x,) (19)

where the f(x), j =0,...,p are known linearly independent functions but with unknown
coefficients. These are commonly taken as monomials in the coordinates of x. The
following is a fairly general form of an interpolating function

Zx(x)= z[i=l,...n] big(x—x,)+ Z[j:()....‘p] a,;(x) 20)

where the kernel g is a known conditionally positive definite function. If the int.er-
polator is required to be exact, i.e., Z*(x;) = Z(x;) for i = 1,...,n then the following
equations are obtained.

2[1:1,.4,[1] big(xk —xi)+z[j=(),,..,p] ajfj(xk)=Z(xk); k=1...n (2la)

Even for fixed g and functions fj(x), the coefficients are not uniquely determined
because the coefficient matrix is not invertible. If the kernel g is conditionally positive
definite with respect to the f,(x) and the following conditions are adjoined to the
system in Eq. 21a

Zﬁ,‘"_m] bfi(x;)=0; j=0...p (21b)

then the coefficient matrix is invertible and hence the coefficients in Eq. 20 are
uniquely determined. The choice of the f(x) affects how the interpolating funct%on
“extrapolates” and the choice of g determines the smoothness of the interpolating
function.

The Thin-Plate Spline is a special case of Eq. 20 as is the Radial Basis Function
interpolator. Using this interpolating function, spatial averages can then be estimated
using irregularly spaced data locations by integration, i.e.,

(I/V)L Z(x) dx = (l/V)J.V Z*(x)dx C(22)

To quantify the error in the estimation of the spatial integral in this way requires
quantifying the error in the interpolation step for all the points in V. One way to do
this is to use a statistical approach. Particularly in the case where only data are
known, statistical methods have certain advantages.
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Regression Methods

The minimum variance unbiased estimator Z(x) is given by the conditional
expectation of Z(x) given Z(x,),...,Z(x,). Unfortunately, to compute the conditional
expectation requires knowing the joint distribution of Z(x), Z(x,),...,Z(x,). In the
special case of joint Normality the conditional expectation is easily computed and
is given by the regression of Z(x) on Z(x,),...,Z(x,). That is,

200-5,, k)

This suggests the use of such an estimator even when the joint distribution is
unknown. Since the estimator is linear in the coefficients they can be determined by
requiring that Z*(x) be unbiased and have minimal error variance. Eq. 23 is known
as the kriging estimator. If Z(x) is regressed on the f,(x) one obtains the well-known
Trend Surface estimator. Using the form of the estimator given in Eq. 23 and using
the variogram to quantify the spatial correlation the following linear system of
equations is obtained

zlmﬂ...n] hir(x, _xi)+2lj=o.....p] mifi(x)=v(x =x); k=1..n (24a)

Z[izl‘m‘n] ;\'jfj(xi) = fj(x); J =0,.. P (24b)

The coefficient matrix is invertible and hence the system has a unique solution. The
W's are Lagrange multipliers introduced in the optimization step because of the
unbiasedness condition. The part of the system given in Eq. 24b is obtained by
imposing the unbiasedness condition. Once again for a given kernel function y(h)
and functions fi(x) the estimator is uniquely determined, but in this case Y(h) and
functions fj(x) are modeled and chosen using data. Note, however, that the system
will have a unique solution for any choice of a valid variogram and linearly inde-
pendent functions. By the use of elementary linear algebra, Eq. 23 can be shown to
be equivalent to Eq. 20 and the system Eq. 24a and 24b is equivalent to the system
given by Eq. 21a and 21b. In the case that there is no spatial correlation, i.e., the
variogram model represents a lack of correlation (known as a “pure nugget” model),
then the values of the estimator given by Eq. 23 will coincide with those of the
Trend Surface interpolator except at the data locations. In this case there is no local
variation, only regional variation and a noise term.

To estimate spatial integrals, the form of the estimator remains the same, but the
coefficients are obtained by a different set of equations, i.e., several simple changes
are made in Eq. 24a and 24b. On the right hand side of Eq. 24a replace y(x, — x) by
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(%, V)= (1/v)J' (%, —x) dx (25

v

and replace fi(x) in Eq. 24b by

£(x,V) = (1/\/)'[V £,(x) dx 26)

For additional details on both the deterministic and regression methods see Myers
(1991b, 1994a, 1994b). The estimator given by Eq. 23 and the system given by Eq.
24a and 24b are both easily adapted to the use of non-point data as well. The same
result is obtained if Eq. 23 is used to obtain a value at each point in V and then
these are averaged, although this would obviously take more computer time than
direct estimation.

Estimation Variances

The error of estimation corresponding to Eq. 23 is given by Z*(x) — Z(x); the
variance of this error is a quadratic form in the A;’s. Substituting the solution from
Eq. 24a and 24b back into this quadratic form gives

= Zli=ly..,n] Kiy(x - Xi)+ z[j=0...,,p] Byfi(x) 27

It is tempting to want to use this variance to construct confidence intervals for the
errors, but some caution should be exercised since this variance does not depend on
the data values (except as the data are used to model the variogram). Even if the
errors are assumed to be Normally distributed this does not result in true confidence
intervals. However, it is useful to construct a contour plot of these minimized error
variances since this plot indicates the (spatial) relative reliability of the interpolated
values. It is much more difficult to associate a measure of relative reliability for the
interpolating function given by Eq. 20.

When Eq. 23 is used to directly estimate spatial integrals then an additional term
will appear in the minimized error variance, which then becomes

o) = 2[i=l,....n] Ax(x;, V)
+ 2[j=0.....p] l»ljfj (x,V)- (l/VZ)IV J; v(u—-w) du dw

where the additional term is the same as Eq. 15a. See also Eq. 25 and 26. It is not
surprising that the minimized error variance (usually called the kriging variance) is
less for estimating spatial integrals than for interpolating at one point.

(28)
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Software

Most standard statistical packages include trend surface analysis and some
include the Thin Plate Spline but do not allow for a choice of the kernel function
in Eq. 20. ARC/INFO incorporates some options for geostatistical analysis but does
not provide the full flexibility described above. The EPA has released a public domain
package, Geo-Eas, that allows for estimating and modeling variograms as well as
kriging and the construction of contour plots. Geo-Eas only includes the case of
m(x) a constant. A tutorial on the use of Geo-Eas in the analysis of lead contamin-
anted soil is given in Myers (1991b). In general the GIS packages that are readily
available do not incorporate spatial statistical tools.

Non-Linear Transforms

In statistics it is common to use a non-linear transformation to equalize variances
or obtain Normality. When treating spatial data such transformations may solve some
problems but may also create others particularly when considering spatial variation
and non-point data. The effect of such transformations on non-point data is consid-
ered in Myers (1993a). There are two transformations that are of special interest,
however. In the case of logNormality, a logarithmic transformation is useful. Let

W(x) =Ln{Z(x)} (29)

Using the transformed data W(x,),..., W(x,) the variogram of W could be modeled
and the counterpart of Eq. 23 used to estimate W(x); then Z(x) could be estimated by

Z**(x) = exp{W *(x)} (30)

However Z**(x) is biased, i.e., E{Z**(x) — Z(x)} # 0. In the case of multivariate
logNormality, the bias adjustment can be computed (which is multiplicative) but
more generally it cannot. As an ad-hoc procedure, one might use M exp{W*(x)} to
interpolate onto a regular grid; then choose M so that the arithmetic average of these
values matches the arithmetic average of the data. Note that if Z(x) is logNormal
(whether multivariate logNormal or not) then the Z(v,) values cannot be logNormal.

The indicator transform is a second kind of non-linear transformation that is
often useful for spatial data. Let

I(x;a)=1, Z(x)<a
€]
0, Z(x)>a

The value “a” is often referred to as a “cutoff” value (because of applications in
mining). For each choice of “a” there is an indicator transform. Note that E{I(a; x)}
= P[Z(x) < a]. Linear estimators such as given by Eq. 23 are not particularly useful
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for estimating probability distributions. The indicator transform provides for a way
to use Eq. 23 to do this. One disadvantage of using the indicator transform is that
it will be necessary to use a number of values of “a” depending on degree of
smoothness desired in the resulting estimated probability distribution function, hence
requiring the modeling of a variogram for each cutoff value and solving t.he system
of equations given by Eq. 24a and 24b for each cutoff. At a non-data point

1*(x;2) = Z[H,...n] A J(x;; ) (32)

is an estimator of I(x; a). Whereas the transformed data are all 0’s or 1’s, Eq. 32
does not ensure the same for I*(x; a) since the weights are not restricted between
0, 1. It is somewhat more useful to consider estimating

o) = ()] 10x 2) dx (33)

v

which might be interpreted as the proportion of v for which the point values are l‘ess
than or equal to a. By estimating Eq. 33 for multiple choices of a, a better appraisal
of the variability of point values within V is obtained than is given by Eq. 6 Both
Eq. 6 and Eq. 33 provide a way to classify pixels or subregions within an image.
An estimator of the same form as that in Eq. 32 can be used to estimate ¢(v; a) but
a slightly modified set of equations is used to determine the coefficients in the
estimator. Because there is a dependence between the I(x; a) for different values of
a and similarly for the ¢(v; a), some form of joint estimation is to be preferred. Qne
approach to this and other joint estimation problems is considered in the next section.

SPATIAL INTERVARIABLE CORRELATION

In many applications there are multiple variables of interest, which might cor-
respond to multiple data layers. Let these be denoted by Z,(x),..., Z(x). Then in
addition to the spatial variability and correlation of each Z,(x), one can consider the
correlation of pairs of these as well as the spatial intervariable correlations. ‘

The use of principal components analysis (PCA) to remove noise from mpluband
images is a well-known technique and is based on the premise that the noise terrp
corresponds to a relatively small part of the total variance. Correspondence ana}ly‘s1s
(CA) might also be used for the same purpose, since it has the advantage of providing
an R and a Q mode analysis simultaneously. An example of an application of CA
to an environmental data set is given in Avila and Myers (1991). However, both
PCA and CA only incorporate intervariable correlations. That is, they‘ consider
similarities and dissimilarities between Z(x), Z,(x); they do not consider such
between Z(x + h), Z,(x). There are at least three ways to quantify the latter corre-
lations. If the Z(x) are second order stationary then use
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Cy(h) = Cov{Z,(x+h).Z, )} (34)

Note that although C;(h) = C,;(-h), C(h) is not symmetric. Under a slightly weaker
stationarity assumption there are two possibilities; the cross-variogram and the
pseudo cross-variogram

Yu(h)=05Cov{Z,(x +h)-Z,(x), Z,(x +h) - Z,(x)} 35)

In this case y,(h) = y,(-h), i.e., the cross-variogram is symmetric. Alternatively there
is the pseudo cross-variogram

Ya(h)=0.5Var {Z, (x+h)-Z (x)} (36)

which is not symmetric. Both of the latter generalize the variogram given in Eq. 11.
A vector form of Eq. 23 known as the cokriging estimator allows joint estimation
of the various components. In the counterparts of Eq. 24a and 24b the variograms
must be replaced by matrix valued functions. The diagonal entries are variograms
and the off diagonal entries are cross-variograms (or pseudo cross-variograms). In
this case it is necessary for the matrix valued function to satisfy certain conditional
positive definiteness conditions. Details are found in Myers (1982, 1988, 1991c,
1991d, 1992). This estimator and the corresponding system of equations are adapt-
able to the possibility that data is missing for some components at some data
locations; see Myers (1988). For an application to an environmental data set, see
Myers (1989b). Carr and Myers (1984) and Glass et al. (1988) consider applications
of cokriging to remotely sensed data and to multiband images. Modification for non-
point data or for the estimation of spatial averages is analogous to that for the single
variable case. Because of the greater difficulty in modeling cross-variograms (or
pseudo cross-variograms) in addition to the separate variograms, it may be desirable
to consider ways to avoid this. One possible solution is to use PCA to generate
“uncorrelated” components; then these new components are treated separately, var-
iograms are estimated and modeled. After interpolation, the original variables are
reconstructed. There are at least three disadvantages: first, the lack of correlation
generated by the use of PCA does not guarantee that the cross-variograms are
identically zero since the latter is a model property; secondly, while the minimized
estimation variances can be computed for the interpolated “components” there is no
way to utilize these to generate minimized estimation variances for the interpolation
of the original variables; finally, PCA does not explicitly take into account the support
of the data as is possible in the statistical interpolation process. Nevertheless it may
be useful to examine the cross-variograms (or pseudo cross-variograms) of the
principal components generated by PCA. It is also possible to utilize PCA to aid in
modeling the cross-variograms. Myers and Carr (1984) give an example to compare
these two approaches.
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Diagonalization: Generalized PCA

Recall that the “components” generated by PCA are linear combinations of the
original variables. Write the original variables as a 1 X m vector, Z(x) = [Z,(x),...,
Z..(x)]. Suppose that each component is a linear combination of uncorrelated com-
ponents, i.e,

Z(x) = Y(x)A 37

where Y(x) is 1 x q vector and A is a g X m matrix. Since the components of Y(x)
are uncorrelated, the matrix variogram of Y(x) is diagonal (the off diagonal entries
are all zeros). Then the matrix variogram of Z(x) is given by

¥z(h) = ATyy(h)A (38)

In PCA it is only necessary to diagonalize a single constant matrix (i.e., find the
eigenvalues and the corresponding eigenvectors) but Yz(h) is not a single matrix. In
general given a matrix function there may not be a matrix A leading to the fogn
given in Eq. 38. Even if g = m, A may not be invertible; hence finding A is not quite
the same as diagonalizing Y,(h). In practice, Y,(h) need only be computed for a finite
number of different values of h and hence it is only necessary to generate a “com-
mon” diagonalization for these values. The assumption that such a diagonalization
exists is a moderately strong one, and as yet easily checked sufficient conditions are
not known. However, a near diagonalization may be possible. Let h,,....h, be the
values of h for which y,(h) must be computed. The objective is to find a matrix B
such that

BTy,(h,)B,....B"y,(h,)B (39)

are “nearly” diagonal. “Nearly” could be evaluated in terms of the sums of the
squares of the off-diagonal entries in the matrices in Eq. 39. Switzer and Green
(1984) used this approach to analyze the Silver Bell TM image data but only
considered h = 1.

SMOOTHING
Interpolation
All interpolation techniques smooth the data, i.e., the variance of the set of

interpolated values is always less than the variance of the original data. This will
occur even if it is assumed that e(x) is identically zero in Eq. 1. This property can
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be used to smooth an image even when no interpolation is necessary, for example
when all the pixel values are known in an image or when the values are known at
every point of a regular grid. As an ad-hoc smoother, an image is sometimes subjected
to a low-pass filter by replacing each original value by a weighted average of the
values of nearby pixels (or grid points). However, the weighting in the average is
somewhat arbitrarily determined, so an alternative is to use the variogram to deter-
mine the weighting. This approach has been discussed by Ma and Royer (1988)
wherein each data value in turn is temporarily suppressed and the value at that
location is interpolated from nearby locations. By using the variogram, which is
modeled from the data, the filter is determined by the spatial variability of the specific
image. By using the vector interpolation technique described above, this form of
smoothing could be applied to a multiband image, smoothing all bands simulta-
neously, and incorporating the intervariable spatial variability.

Noise Removal

If in the model given by Eq. 1, Y(x) is taken to be identically zero then the
smoothing objective is to remove the e(x) term. Ordinarily the noise component is
assumed to be uncorrelated spatially and the most common method for its removal
is by some form of regression of Z(x) on m(x).

It was noted above that PCA is sometimes used to “remove” noise from a
multiband image by deleting those principal components with small eigenvalues,
i.e., small variances, then reconstructing the image using only the remaining com-
ponents. There is a degree of subjectivity in determining how small is small. Note
that the components generated by PCA are not affected by an arbitrary rearrangement
of the locations of the pixels in the image, and hence, important information reflected
in the image is not utilized.

A Combination

In the preceding discussion of interpolation, it was assumed that the error term
e(x) in Eq. 1 was identically zero. A more general objective might be to estimate
Y(x) + m(x) at data locations and to interpolate this sum at non-data locations. The
smoothing spline is a modification of the thin plate spline that combines both
interpolation and noise removal. Since the thin plate spline is a special case of the
interpolator given in Eq. 20 it is reasonable to expect that a generalization of the
smoothing spline would have a similar form, but where the coefficients are obtained
from a modification of Eq. 21a and 21b. It is somewhat easier to do this by beginning
with the statistical form given in Eq. 23. This is discussed in Myers (1994a) and
results in only a slight modification of the equations in Eq. 24a and 24b. The variance
of the noise term must be known or estimated from the data. The modified form of
Eq. 21a and 21b is then obtained from the modified version of Eq. 24a and 24b.
This may be extended to the multiband case where the vector interpolator discussed
above is used.
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FRACTALS AND FRACTAL DIMENSION

As was noted earlier the exponent in a power model variogram is related to the
fractal dimension. This relationship has been exploited in both Carr and Benzer
(1991) and Jaggi et al. (1993) as a means of estimating the fractal dimension. This
relationship can be interpreted intuitively in a useful manner and it can also be
related to the identity given in Eq. 9. The theory of fractals is built on the concept
of self-similarity, whereas the fractal dimension can be interpreted as relating to the
roughness of a curve or surface, Lam and Quattrochi (1992), Jaggi et al. (1993). !_zt
x be a point in k-dimensional space, V a region in this space, and Z(x) a function
defined on V; then the pair (X, Z(x)) determines a “surface” in k+1-dimensional
space. One measure of the “roughness” of this surface is simply

V)], 26 -ZV)] ex

where Z(V)=(1/V )JVZ(x) dx which are simply Eq. 2 and 4. Z(V) might be interpreted
as the “area” of the surface measured at a minute scale. Alternatively, Z(V) is the
average of local areas, i.e., if V is partitioned into disjoint, congruent subelements
v;, then Z(V) = (v/V)ZZ(v,). Think of these as the measurements made in a rul_er—
step process where each Z(v,) is not known exactly but is estimated by pnits of size
v;. In particular consider a 1-dimensional analog, i.e., x in 1-dimensional space.
Then V is an interval; suppose now that V is partitioned into subintervals of length
v and let x,,...,x,, be the end-points of the subintervals, m = V/v. Then the length
of the curve is approximated by

Z[(xi - xi+l)2 + (Z(xi) - Z(xm ))2]

which is clearly related to

0.5

2 [(Z(xi) -Z(x,, ))2]0-5

and in turn to

3 (2(x)-2(x.,)’

which is essentially the sample variogram for lag v. The variation in the measure-
ments of the Z(v;)’s from the true values might be represented by interpreting Z(x)
as a random function. It is known that a fractional Brownian motion has a power
model variogram. Now the identity in Eq. 9 can be reinterpreted. Averaging Z(x)
over the elemental units v “smoothes” the surface but leaves discontinuities; the
triangular prism method described in Jaggi et al. (1993) can be thought of as a way

STATISTICAL MODELS FOR MULTIPLE-SCALED ANALYSIS 291

to obtain the smoothing but retain continuity. As the surface is smoothed, the fractal
dimension decreases; this is seen in the identity because the regularized variogram
Eq. 17 is smoothed as the regularizing unit is increased in size.

SUMMARY

The quantification of spatial variability and spatial correlation is seen to be the
key to relating different data models as well as multiscaled data layers. Within-pixel
and between-pixel variation are related to the total within-image variation. This
quantification may be considered for each layer separately or it may be determined
for multiband images. A distinction is made between empirical measures and theo-
retical models of spatial variability and spatial correlation; theoretical models are
important for interpolation and for estimation of spatial averages. The relationship
between and the distinction between interpolation and smoothing are discussed.
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